On the edge cover polynomial of a graph

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ON THE EDGE COVER POLYNOMIAL OF CERTAIN GRAPHS

Let $G$ be a simple graph of order $n$ and size $m$.The edge covering of $G$ is a set of edges such that every vertex of $G$ is incident to at least one edge of the set. The edge cover polynomial of $G$ is the polynomial$E(G,x)=sum_{i=rho(G)}^{m} e(G,i) x^{i}$,where $e(G,i)$ is the number of edge coverings of $G$ of size $i$, and$rho(G)$ is the edge covering number of $G$. In this paper we stud...

متن کامل

On the edge cover polynomial of a graph

Let G be a simple graph of order n and size m. An edge covering of a graph is a set of edges such that every vertex of the graph is incident to at least one edge of the set. Here we introduce a new graph polynomial. The edge cover polynomial of G is the polynomial E(G, x) = ∑m i=1 e(G, i)x , where e(G, i) is the number of edge covering sets of G of size i. Let G and H be two graphs of order n s...

متن کامل

On the Roots of Hosoya Polynomial of a Graph

Let G = (V, E) be a simple graph. Hosoya polynomial of G is d(u,v) H(G, x) = {u,v}V(G)x , where, d(u ,v) denotes the distance between vertices u and v. As is the case with other graph polynomials, such as chromatic, independence and domination polynomial, it is natural to study the roots of Hosoya polynomial of a graph. In this paper we study the roots of Hosoya polynomials of some specific g...

متن کامل

on the edge cover polynomial of certain graphs

let $g$ be a simple graph of order $n$ and size $m$.the edge covering of $g$ is a set of edges such that every vertex of $g$ is incident to at least one edge of the set. the edge cover polynomial of $g$ is the polynomial$e(g,x)=sum_{i=rho(g)}^{m} e(g,i) x^{i}$,where $e(g,i)$ is the number of edge coverings of $g$ of size $i$, and$rho(g)$ is the edge covering number of $g$. in this paper we stud...

متن کامل

The edge tenacity of a split graph

The edge tenacity Te(G) of a graph G is dened as:Te(G) = min {[|X|+τ(G-X)]/[ω(G-X)-1]|X ⊆ E(G) and ω(G-X) > 1} where the minimum is taken over every edge-cutset X that separates G into ω(G - X) components, and by τ(G - X) we denote the order of a largest component of G. The objective of this paper is to determine this quantity for split graphs. Let G = (Z; I; E) be a noncomplete connected split...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: European Journal of Combinatorics

سال: 2013

ISSN: 0195-6698

DOI: 10.1016/j.ejc.2012.05.005